
International Journal of Computers, Communications & Control
Vol. I (2006), No. 1, pp. 25-32

One More Universality Result for P Systems with Objects on Membranes

Gheorghe P̆aun

Abstract: We continue here the attempt to bridge brane calculi with membrane computing,
following the investigation started in [2]. Specifically, we consider P systems with objects
placedon membranes, and processed by membrane operations. The operations used in this
paper are membranecreation(cre), and membranedissolution(dis), defined in a way which
reminds the operationspino, exofrom a brane calculus from [1]. For P systems based on these
operations we prove the universality, for one of the two possible variants of the operations;
for the other variant the problem remains open.
Keywords: Membrane computing, Brane calculi, Matrix grammar, Universality

1 Introduction

This paper is a direct continuation of [2], where a first step was made to bridge membrane computing [4],
[5], [6] and brane calculi [1]. The main point of this effort is to define P systems which work with multisets
of objects placedon the membranes rather than inside the compartments defined by membranes, and to process
these multisets by means of operations with membranes rather than by multiset rewriting rules acting only on
objects. The operationspino, exo, mate, dripwere formalized in [2] as membrane computing rules, and used
in defining P systems based on them. The universality ofmate, dripoperations was proved in [2] (for systems
using simultaneously at any step of a computation at most eleven membranes). We give here an universality result
for other two operations, membrane creation (cre), and membrane dissolution (dis), which have the same syntax
aspino, exooperations, but a different interpretation in what concerns the contents of the handled membranes –
details can be found in Section 3 below. Actually, as it was the case in [2] withpino, exo, we have two variants of
each of the operationscre, dis. For one of these variants, we prove the Turing completeness, while the case of the
other variant remains open (we believe that a similar result holds true).

2 Prerequisites

All notions of formal language theory we use are elementary and standard, and can be found in any basic
monograph of formal language theory. For the sake of completeness, we introduce below only the notion of matrix
grammars with appearance checking – after specifying that byRE we denote the family of recursively enumerable
languages, and byPsREthe family of Parikh images of languages fromRE (the Parikh mapping associated with
an alphabetV is denoted byΨV).

A matrix grammars with appearance checking [3] is a constructG = (N,T,S,M,F), whereN,T are disjoint
alphabets (of non-terminals and terminals, respectively),S∈ N (axiom), M is a finite set ofmatrices, that is
sequences of the form(A1→ x1, . . . ,An→ xn), n≥ 1, of context-free rules overN∪T, andF is a set of occurrences
of rules in the matrices ofM.

For w,z∈ (N∪T)∗ we write w =⇒ z if there is a matrix(A1 → x1, . . . ,An → xn) in M and the stringswi ∈
(N∪T)∗,1≤ i ≤ n+1, such thatw = w1,z= wn+1, and, for all1≤ i ≤ n, either (1)wi = w′iAiw′′i ,wi+1 = w′ixiw′′i ,
for somew′i ,w

′′
i ∈ (N∪T)∗, or (2) wi = wi+1, Ai does not appear inwi , and the ruleAi → xi appears inF . (If

applicable, the rules fromF should be applied, but if they cannot be applied, then we may skip them. That is why
the rules fromF are said to be applied in theappearance checkingmode.) IfF = /0, then the grammar is said to be
without appearance checking.

The language generated byG is defined byL(G) = {w ∈ T∗ | S=⇒∗ w}, where=⇒∗ is the reflexive and
transitive closure of the relation=⇒.

The family of languages of this form is denoted byMATac; it is known thatMATac = RE.
We say that a matrix grammar with appearance checkingG = (N,T,S,M,F) is in theZ-binary normal formif

N = N1∪N2∪{S,Z,#}, with these three sets mutually disjoint, and the matrices inM are in one of the following
forms:

1. (S→ XA), with X ∈ N1,A∈ N2,

2. (X →Y,A→ w), with X,Y ∈ N1,A∈ N2,w∈ (N2∪T)∗, |w| ≤ 2,

Copyright c© 2006 by CCC Publications

26 Gheorghe P̆aun

3. (X →Y,A→ #), with X ∈ N1,Y ∈ N1∪{Z},A∈ N2,

4. (Z→ λ).

Moreover, there is only one matrix of type 1,F consists exactly of all rulesA→ # appearing in matrices of type 3,
and, if a sentential form generated byG contains the symbolZ, then it is of the formZw, for somew∈ (T ∪{#})∗
(that is, the appearance ofZ makes sure that, except forZ, all symbols are either terminal or the trap-symbol#).
The matrix of type 4 is used only once, in the last step of a derivation.

For each languageL ∈RE there is a matrix grammar with appearance checkingG in the Z-binary normal form
such thatL = L(G).

As usual, we represent multisets over an alphabetV by strings overV, with the obvious observation that all
permutations of a string represent the same multiset.

3 P Systems Using the Cre/Dis Operations

We start by recalling from [2] the formalization of the operationspino, exoin terms of membrane computing.
A membrane is represented, as usual, by a pair of square brackets, [], but we associate here with membranes

multisets of object(corresponding to the proteins embedded in the real membranes). A membrane having asso-
ciated a multisetu (represented by a string) is written in the form[]u; we also use to say that the membrane is
markedwith the multisetu.

The following four operations were defined in [2]:

pinoi : []uav→ [[]ux]v, (1)

exoi : [[]ua]v → []uxv, (2)

pinoe : []uav→ [[]v]ux, (3)

exoe : [[]u]av→ []uxv. (4)

in all cases witha∈V, u,x∈V∗, v∈V+, with ux∈V+ for pino rules, whereV is a given alphabet of objects.
In each case, multisets of proteins are transferred from input membranes to output membranes as indicated

in the rules, with proteina evolved into the multisetsx (which can be empty). The subscriptsi ande stand for
“internal" and “external", respectively, pointing to the “main" membrane of the operation in each case.

It is important to note that the multisetsu,v and the proteina marking the left hand membranes of these rules
correspond to the multisetsu,v,x from the right hand side of the rules; specifically, the multisetuxvresulting when
applying the rule is precisely split intoux andv, with these two multisets assigned to the two new membranes.

The rules are applied as follows. Assume that we have a membrane[]zuav, for a∈V,u,v,z∈V∗. By a pinoi

rule as in (1), we obtain any one of the pairs of membranes[[]z1ux]z2v such thatz= z1z2, z1,z2 ∈V∗, and by a
pinoe rule as in (3), we obtain any one of the pairs of membranes[[]z1v]z2ux such thatz= z1z2, z1,z2 ∈V∗.

In the case of the twoexooperations, the result is uniquely determined. From a pair of membranes[[]z1ua]z2v,
by anexoi rule as in (2) we obtain the membrane[]z1z2uxv, and from[[]z1u]z2av, by anexoe rule as in (4) we
obtain the same membrane[]z1z2uxv.

The contents of membranes involved in these operations is transferred from the input membranes to the out-
put membranes in the same way as in brane calculi (P,Q represent here the possible contents of the respective
membranes):

pinoi : [P]uav→ [[]ux P]v,

exoi : [[P]ua Q]v → P [Q]uxv,

pinoe : [P]uav→ [[]v P]ux,

exoe : [[P]u Q]av→ P [Q]uxv.

Here we change the interpretation of these rules, as suggested below (because the new semantics do not cor-
respond to the operationspino, exo, we change the name of operations tocre, dis, for “membrane creation" and

One More Universality Result for P Systems with Objects on Membranes 27

“membrane dissolution"):

crei : [P]uav→ [[P]ux]v,

disi : [[P]ua Q]v → [P Q]uxv,

cree : [P]uav→ [[P]v]ux,

dise : [[P]u Q]av→ [P Q]uxv.

That is, when a membrane is created inside an existing membrane, the new membrane contains all previously
existing membranes, and while dissolving a membrane, its contents remains inside the membrane where it was
placed before the operation. The interpretation of the latter operation is rather similar to the usual dissolution
operation in membrane computing, while the membrane creation is understood as doubling the existing membrane,
with a distribution of the multiset marking the initial membrane to the two new membranes.

Using rules as defined above, we can define a P system as

Π = (A,µ ,u1, . . . ,um,R),

where:

1. A is an alphabet (finite, non-empty) of objects;

2. µ is a membrane structure withm≥ 2 membranes;

3. u1, . . . ,um are multisets of objects (represented by strings overA) bound to them membranes ofµ at the
beginning of the computation; the skin membrane is marked withu1 = λ ;

4. R is a finite set ofcre, disrules, of the forms specified above, with the objects from the setA.

For a rule of any type, withu,a,v as above,|uav| is called theweightof the rule.
In what follows, the skin membrane plays no role in the computation,no rule can be applied to it. Also, we

stress the fact that there is no object in the compartments ofµ ; a membrane can contain other membranes inside,
but in-between membranes there is nothing.

When using any rule of any type, we say that the membranes from its left hand side areinvolvedin the rule;
they all are “consumed", and the membranes from the right hand side of the rule are produced instead. Similarly,
the objecta specified in the left hand side of rules is “consumed", and it is replaced by the multisetx.

The evolution of the system is defined in the standard way used in membrane computing, with the rules applied
in the non-deterministic maximally parallel manner, with each membrane involved in at most one rule. Thus,
the parallelism is maximal at the level of membranes – each membrane which can evolve has to do it – but each
multiset of objects evolves in a sequential manner, as only one rule can act on any multiset in a transition step.
More precise details can be found in [2]. A computation which starts from the initial configuration issuccessful
if (i) it halts, that is, it reaches a configuration where no rule can be applied, and (ii) in the halting configuration
there are only two membranes, the skin (marked withλ) and an inner one. Theresultof a successful computation
is the vector of multiplicities of objects which mark the inner membrane in the halting configuration. The set of all
vectors computed in this way byΠ is denoted byPs(Π).

The family of all sets of vectorsPs(Π) computed by P systemsΠ using at any moment during a computation
at mostm membranes, andcrei , disi rules of weight at mostp,q, respectively, is denoted byPsOPm(crep,disq).
When one of the parametersm, p,q is not bounded we replace it with∗.

We end this section by pointing out some relations which follow directly from the definitions (and from Turing-
Church thesis).

Lemma 1. (i) PsOPm(crep,disq)⊆ PsOPm′(crep′ ,disq′), for all m≤m′, p≤ p′,q≤ q′.
(ii) PsOP∗(cre∗,dis∗)⊆ PsRE.

We also recall the main result from [2]:PsOP11(mate5,drip5) = PsRE(the notation is self-explanatory).

28 Gheorghe P̆aun

4 Universality for the Cre/Dis Operations

In the case ofcre, disoperations as defined above, we cannot generate vectors of norm 0 or 1: in each rule
[]uav→ [[]ux]v, [[]ua]v → []uxv (necessary in the last step of any computation in order to get only one internal
membrane) we have imposed to have|uxv| ≥ 2. That is why the universality below is obtained modulo vectors of
the form(0, . . . ,0) and(0, . . . ,0,1,0, . . . ,0). We denote byPs′RE andPs′OPm(crep,disq) the sets of vectors from
PsREandPsOPm(crep,disq) having the sum of elements greater than or equal to 2.

Theorem 2. Ps′RE= Ps′OPm(crep,disq) for all m≥ 7, p≥ 4, andq≥ 4.

Proof. Let us consider a languageL ∈ RE= MATac, L ⊆V2V∗, for an alphabetV with n symbols. We write this
language in the form

L =
⋃

a,b∈V

{ab}∂ l
ab(L).

Let Gab = (Nab,V,Sab,Mab,Fab) be a matrix grammar with appearance checking such thatL(Gab) = ∂ l
ab(L), for

a,b∈V. We consider these grammarsGab in the Z-normal form, with the notations from Section 2 (henceNab =
Nab,1∪Nab,2∪{Sab,Zab,#}), and we construct the matrix grammarG = (N,V,S,M,F) with

N = N1∪N2∪{Zab | a,b∈V}∪{S,#},
N1 =

⋃

a,b∈V

Nab,1,

N2 =
⋃

a,b∈V

Nab,2,

M = {(S→ XA) | for (Sab→ XA) ∈Mab, a,b∈V}
∪ {(X →Y,A→ w) | for (X →Y,A→ w) ∈Mab,a,b∈V}
∪ {(Zab→ ab) | for (Z→ λ) ∈Mab,a,b∈V}.

Obviously,L(G) = L.
We assume that all two-rules matrices fromM are injectively labeled, in the formml : (X→Y,A→ x), l ∈ Lab,

for a set of labelsLab.
Starting from the grammarG we now construct a P system

Π = (A, [[]],λ ,S1S2,R),

with the alphabet

A = {Y,Y′,Y′′,Y′′′,Yiv,Yv,Yvi,Yvii ,Yviii ,Yix,Yx |Y ∈ N1}
∪ {α,α ′,α ′′ | α ∈ N2∪V}
∪ {Ā | A∈ N2}
∪ {Zab,Z

′
ab,Z

′′
ab,Z

′′′
ab | a,b∈V}

∪ {E,H,H ′,S1,S2,S3,c1, . . . ,c11,c0,c
′
0,c

′′
0,c

′
3,c

′′
3,d1,d2,d

′
1,d

′
2, f ′, f ′′,#},

and the rules from the setR as constructed below.
Any computation starts from the configuration[[]S1S2

]λ , by using the following rules:

Step 1 : []S1S2
→ [[]X]S2

,

Step 2 : [[]X]S2
→ []Xc0d1S2

,

Step 3 : []XS2c0d1
→ [[]XS3

]c0d1
,

Step 4 : []S3X → [[]EĀ]X, []c0d1
→ [[]c′0

]d1
,

Step 5 : [[]EĀ]X → []EĀX, [[]c′0
]d1
→ []c′′0d1

,

Step 6 : []XĀE → [[]XA]E, []c′′0d1
→ [[]c1

]d1
,

for each matrix(Sab→ XA) ∈Mab, for a,b∈V.

One More Universality Result for P Systems with Objects on Membranes 29

The rules are used as indicated in the table above, with two rules simultaneously applied in steps 4, 5, 6. The
only possible branching is in step 3, when instead of the rule[]XS2c0d1

→ [[]XS3
]c0d1

, we can also use the rule
[]c0d1

→ [[]c′0
]d1

. In this way we obtain the membranes[[]c′0
]d1

, with XS2 distributed among them. Because
S3 will be never introduced, we continue only with rules which process membranes marked withci andd1, namely,
the rules from the third column of Table 1; in this way, the computation will never stop, both because we can return
again and again to a pair of membranes of the form[[]c1

]d1
, and because pairs of membranes marked withc′3

will appear and introduce trap objects/membranes – see also below.
The evolution of the membrane structure is indicated in Figure 1.

Initial [[]S1S2
]λ

Step 1 [[[]X]S2
]λ

Step 2 [[]Xc0d1S2
]λ

Step 3 [[[]XS3
]c0d1

]λ
Step 4 [[[[[]EĀ]X]c′0

]d1
]λ

Step 5 [[[]EĀX]c′′0d1
]λ

Step 6 [[[[[]XA]E]c1
]d1

]λ

Figure 1: The evolution of membranes at the beginning of computations.

Thus, we end with a configuration of the form[[[[[]XA]E]c1
]d1

]λ .
The rules for simulating the two-rules matrices fromM are indicated in Table 1; byw′ we denote here the string

obtained fromw by priming one symbol; ifw = λ , thenw′ = f ′, henceα ′ = f ′,α ′′ = f ′′ and, in row 6,α = λ .

Step ml : (X →Y,A→ w) ml : (X →Y,B→ #)
1 [[]X]E → []Xl E

[[]X]E → []Xl E
[[]c1

]d1
→ []c2c3d1

2 []AEXl
→ [[]w′]EXl

[]Xl BE → [[]Xl ##]E []c3c2d1
→ [[]c′3

]c2d1

3 [[]EXl
]c′3
→ []EY′c′3

[[]Xl E
]c′3
→ []YviHEc′3

[]c2d1
→ [[]c4

]d1

4 []c′3Y′E → [[]c′3Y′′]E []Yvic′3EH → [[]c′3Yvii]EH [[]c4
]d1
→ []c5d1

5 [[]α ′]c′3Y′′ → []α ′′c′3Y′′ []Yviic′3
→ [[]Yviii]c′3

[]c5d1
→ [[]c6

]d1

[]HE → [[]H ′]E
6 [[]α ′′c′3Y′′]E → []αc′3Y′′E [[]c′3

]H ′ → []c′′3H ′ [[]c6
]d1
→ []c7d1

7 []c′3Y′′E → [[]c′3Y′′′]E [[]Yviii]c′′3H ′ → []Yixc′′3H ′ []c7d1
→ [[]c8

]d1

8 [[]c′3Y′′′]E → []Y′′′E [[]Yixc′′3H ′]E → []YixH ′E [[]c8
]d1
→ []c9d1

9 []Y′′′E → [[]Yiv]E []YixH ′E → []Yx]E []c9d1
→ [[]c10

]d1

10 [[]Yiv]E → []YvE [[]Yx]E → []YxE [[]c10
]d1
→ []c11d1

11 []YvE → [[]Y]E []YxE → [[]Y]E []c11d1
→ [[]c1

]d1

Table 1: Rules for simulating two-rules matrices.

We also consider the rules

[]Xl E
→ [[]##]E, for each matrixml : (X →Y,A→ w),

[[]H ′]E → []##E,

[]##→ [[]#]#,

[[]#]# → []##.

The simulation of matrices inG is performed by modifying the marking of the central membranes, those
emerging from the initial membranes with markingsXA andE, with these operations being assisted by the two
membranes with markingsc1 andd1 and their successors, which are external to the central membranes where
the sentential form ofG is produced. Always during the computation, the membranes remain embedded one in
another, in a linear manner, never having two membranes on the same level (here stands the essential difference
between the interpretation of thecre, disoperations and the interpretation of thepino, exooperations from [1], [2]).

30 Gheorghe P̆aun

The evolution of the membranes and of their relevant markings can be followed in Figure 2. If in the second
step the rule[]AEXl

→ [[]w′]EXl
is not applicable (hence the matrixml cannot be applied), then the rule[]Xl E

→
[[]##]E will be applied, introducing the trap-object#, and the computation will never halt.

Starting [[[[[]X]E]c1
]d1

]λ
Step 1 [[[]Xl EA]c2c3d1

]λ
Step 2 [[[[[]w′]EXl

]c′3
]c2d1

]λ
Step 3 [[[[[]α ′]EY′c′3

]c4
]d1

]λ
Step 4 [[[[[]α ′]c′3Y′′]E]c5d1

]λ
Step 5 [[[[[]α ′′c′3Y′′]E]c6

]d1
]λ

Step 6 [[[]αc′3Y′′E]c7d1
]λ

Step 7 [[[[[]c′3Y′′′]E]c8
]d1

]λ
Step 8 [[[]Y′′′E]c9d1

]λ
Step 9 [[[[[]Yiv]E]c10

]d1
]λ

Step 10 [[[]YvE]c11d1
]λ

Step 11 [[[[[]Y]E]c1
]d1

]λ

Figure 2: The evolution of membranes when simulatingml : (X →Y,A→ w).

The evolution of membranes in the case of the simulation of a matrixml : (X →Y,B→ #) can be followed in
Figure 3. This time, ifB is present, in step 2 we have to use the rule[]Xl BE → [[]Xi##]E, and the computation
will never halt. If no copy ofB is present, then the central membrane does not evolve, waiting for the membrane
marked withc′3 to be produced; this membrane can be used in the next step for evolving the central membrane.

Starting [[[[[]X]E]c1
]d1

]λ
Step 1 [[[]Xl E

]c2c3d1
]λ

Step 2 [[[[]Xl E
]c′3

]c2d1
]λ

Step 3 [[[[]YviHEc′3
]c4

]d1
]λ

Step 4 [[[[]c′3Yvii]EH]c5d1
]λ

Step 5 [[[[[[[]Yviii]c′3
]H ′]E]c6

]d1
]λ

Step 6 [[[[[]Yviii]c′′3H ′]E]c7d1
]λ

Step 7 [[[[[]Yixc′′3H ′]E]c8
]d1

]λ
Step 8 [[[]YixH ′E]c9d1

]λ
Step 9 [[[[[]Yx]E]c10

]d1
]λ

Step 10 [[[]YxE]c11d1
]λ

Step 11 [[[[[]Y]E]c1
]d1

]λ

Figure 3: The evolution of membranes when simulatingml : (X →Y,B→ #).

Another step when we can apply a rule different from that indicated in Table 1 is step 4, when we can also use
the rule[]HE → [[]H ′]E. In this way, we pass to the configuration of membranes[[[[]H ′w1

]Ew2
]c5d1

]λ ,

wherew1w2 = Yvic′3. No rule can be applied to the two inner membranes other than[[]H ′]E → []##E, and again
the computation will never stop.

Therefore, the simulation of matrices inG should be done as above, and in this way we return to a configuration
as that we have started with, with four membranes marked withX,E,c1,d1, respectively (the central membranes
also having on them the symbols of the current sentential form ofG which is simulated inΠ).

Note that the rules used for simulating a matrixml : (X →Y,A→ w) cannot be mixed with the rules used for
simulating a matrixml ′ : (X′→Y′, A′→ #), because of the injective labeling of matrices fromM and because of
the priming of symbols fromN1.

The process can be iterated, hence at some moment we introduce the symbolZab identified by the symbols
from N1 used. The respective configuration is of the form:[[[[[]Zab

]E]c1
]d1

]λ . The central membrane will

One More Universality Result for P Systems with Objects on Membranes 31

“swallow" all other membranes, also removing all auxiliary objects. To this aim, we use the following rules:

Step 1 [[]Zab
]E → []Z′abE,

Step 2 [[]Z′abE]c2c3
→ []Z′abbc2c3

,

Step 3 []Z′abc2c3d1
→ [[]Z′ab

]c3d1
,

Step 4 [[]Z′ab
]c3d1

→ []Z′′abc3d1
,

Step 5 []Z′′abc3d1
→ [[]Z′′ab

]d1
,

Step 6 [[]Z′′ab
]d1
→ []Z′′′abd1

,

Step 7 []Z′′′abd1b → [[]Z′′′ab
]b,

Step 8 [[]Z′′′ab
]b → []ab,

for all a,b∈V. Furthermore, we consider the rules

[]Z′abE → [[]##]E,

[[]c′3
]c′3
→ []##c′3

,

[]#a → [[]##]a, for all a∈V.

The first of these rules is used in step 2 if the rule[[]Z′abE]c2c3
→ []Z′abbc2c3

is not used – the objectsc2c3d1

might be used at that time by the rule[]c3c2d1
→ [[]c′3

]c2d1
from Table 1. Similarly, if this last rule is used in

step 3 instead of the rule[]Z′abc2c3d1
→ [[]Z′ab

]c3d1
, then a membrane marked withc′3 is introduced, which will

never be removed. In particular, after 11 steps, we introduce another membrane marked withc′3, and then the rule
[[]c′3

]c′3
→ []##c′3

is used, preventing the termination of the computation. In conclusion, the evolution of the
membranes in the final stage of the computation is as indicated in Figure 4.

Starting [[[[[]Zab
]E]c1

]d1
]λ

Step 1 [[[]Z′abE]c2c3d1
]λ

Step 2 [[]Z′abbc2c3d1
]λ

Step 3 [[[]Z′ab
]c3d1

]λ
Step 4 [[]Z′′abc3d1

]λ
Step 5 [[[]Z′′ab

]d1
]λ

Step 6 [[]Z′′′abd1
]λ

Step 7 [[[]Z′′′ab
]b]λ

Step 8 [[]ab]λ

Figure 4: The evolution of membranes in the end of computations.

The equalityΨV(L(G)) = Ps(Π) follows from the previous explanations.
With the observation that the maximal number of membranes present in the system is seven, in step 5 from

Figure 3 (during the simulation of matrices with a rule to be used in the appearance checking mode), and that the
rules have the weight as specified in the theorem, we conclude the proof.

5 Final Remarks

The case of using the operationscree, dise remains as a task for the reader, and the same with other operations
from brane calculus – see also [2] for related problems. Improvements of the result in Theorem 2 are also plausible
in what concerns the degree of context-sensitivity of the rules (and maybe also in what concerns the number of
membranes). The same problems can be formulated for the result from [2].

As a general research topic, it remains to systematically investigate P systems with multisets of objects placed
on membranes (maybe also in the compartments), processed by membrane handling operations like in brane calculi
(maybe also by local multiset rewriting rules).

32 Gheorghe P̆aun

References

[1] L. Cardelli, Brane calculi. Interactions of biological membranes,Proc. Computational Methods in Systems
Biology, 2004, Springer-Verlag, Berlin, to appear.

[2] L. Cardelli, Gh. P̆aun, An universality result for a (mem)brane calculus based on mate/drip operations,Intern.
J. Foundations of Computer Sci., 17, 1 (2006), 49–68.

[3] J. Dassow, Gh. P̆aun,Regulated Rewriting in Formal Language Theory, Springer-Verlag, Berlin, 1989.

[4] Gh. P̆aun, Computing with membranes,Journal of Computer and System Sciences, 61, 1 (2000), 108–143 (and
Turku Center for Computer Science–TUCS Report 208, November 1998,www.tucs.fi).

[5] Gh. P̆aun,Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.

[6] The membrane computing web page:http://psystems.disco.unimib.it .

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania

and
Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: george.paun@imar.ro, gpaun@us.es

Editor’s note about the author:
Gheorghe P̆AUN (born on December 6, 1950) graduated the Faculty of
Mathematics of the Bucharest University in 1974 and got his PhD at the
same faculty in 1977. He has won many scholarships, in Germany, Fin-
land, The Netherlands, Spain, etc. Presently he is a senior researcher at
the Institute of Mathematics of the Romanian Academy, Bucharest, and
a Ramon y Cajal research professor at Sevilla University, Spain. Since
1997 he is a Corresponding Member of the Romanian Academy, and
since 2006 a member of Academia Europaea. His main research fields
are formal language theory (regulated rewriting, contextual grammars,
grammar systems), automata theory, combinatorics on words, compu-
tational linguistics, DNA computing, membrane computing (this last
area was initiated by him in 1998). He has (co)authored and (co)edited
more than fifty books in these areas, and he has (co)authored more than
400 research papers. In the last two decades he has visited many uni-
versities from Europe, USA, Canada, Japan, also participating to many
international conferences, several times as an invited speaker. He is a
member of the editorial board of numerous computer science journals
and professional associations.

